Dr. Y. Jaya Vinse Ruban Department of Chemistry St. Xavier's College (Autonomous) Palayamkottai-627002.

Molecular Reaction Dynamics.

Collision theory of gases Collision number and frequency factor Interpretation of Arrhenius relationship Steric factor Summary

The theoretical explanation of reaction kinetics

- Consider a simple bimolecular reaction $A + B \rightarrow C$
- From empirical observation the rate is found to obey the Arrhenius law.

rate = k[A][B] where
$$k = A \exp(\frac{-E_a}{RT})$$

- What is the physical interpretation of this rate law?
 - The molecules A and B must meet
 - The molecules A and B must be able to interact in a way that leads to reaction
 - The mechanistic route from A and B to C involves some rearrangement of atoms in the molecules A and B. Bonds are broken and new bonds are formed. There is a transition state with higher energy (E_a) than the ground state of the individual molecules.
 - The molecules must possess sufficient energy to reach the transition state.
- The development of the theory progressed in the first half of the 20th century to cover simple collision theory, thermodynamics, statistical mechanics and molecular dynamics, culminating in transition state theory (Eyring, Evans and Polanyi).

Collision theory of gases

• In order to derive an expression for the rate constant k_r we will consider the frequency of collisions and the distribution of energy for the same simple 2nd order bimolecular reaction $A + B \rightarrow C$

Rate = k_r[A][B] = rate of collisions x probability of sufficient energy

- Consider the molecules as hard spheres. The collision number or collision density Z_{AB} is the total number of collisions of molecules of A with molecules of B per unit time per unit volume.
- From the kinetic theory of gases the collision number Z_{AB} is proportional to
 - the numbers of molecules N_A and N_B per unit volume
 - the mean speed of the molecules $(8kT/\pi \mu_{AB})^{1/2}$
 - the sizes of the molecules expressed as their collision cross-section $\sigma_{AB} = \pi d_{mean}^2$

$$Z_{AB} = \sigma_{AB} \{ \frac{8kT}{\pi\mu}_{AB} \}^{1/2} N_A N_B = \sigma_{AB} \{ \frac{8kT}{\pi\mu}_{AB} \}^{1/2} N_{Av}^2 [A] [B] \text{ molecules } m^{-3} s^{-1}$$

• Use Z_{AA} and N_A^2 for reaction of like molecules; divide by 2 to avoid double-counting

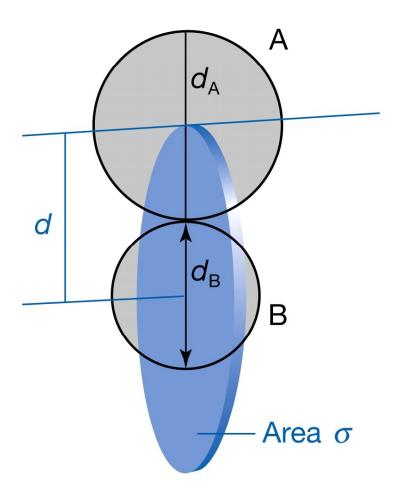
Symbols: k = Boltzmann constant =R/N_{Av}, N_{Av} = Avogadro number (n.b. caution re dual use of symbols k, N), μ_{AB} = reduced mass of the molecules =m_Am_B/(m_A+m_B).

Collision cross-section

- Molecules can collide anywhere between head-on and glancing. For the minimum glancing collision the centres of the two molecules are separated by the distance of their combined radii $d = (d_A + d_B)/2$.
- The collision cross-section is therefore the area of a circle of radius d = (d_A + d_B)/2.

$$\sigma_{AB} = \pi d^2 = \pi (d_A + d_B)^2/4$$

Diagram from 'Physical Chemistry', 7th edn, P.W Atkins & J. de Paula, OUP (2002) www.oup.co.uk/powerpoint/bt/atkins



Hard sphere collision theory (Lewis & Trautz)

- Reaction rate (molecules L⁻¹s⁻¹) = collision number x probability of sufficient energy (estimated as the empirical Arrhenius relationship).
- For reaction between A and B

Rate (molecules m⁻³s⁻¹) =
$$Z_{AB} \exp(\frac{-E_a}{RT}) = -\sigma_{AB} \{\frac{8kT}{\pi\mu}\}^{1/2} N_{Av}^2 \exp(\frac{-E_a}{RT})$$
 [A][B]
Rate (moles m⁻³s⁻¹) = $\sigma_{AB} \{\frac{8kT}{\pi\mu}\}^{1/2} N_{Av} \exp(\frac{-E_a}{RT})$ [A][B]
where $z_{AB} = \sigma_{AB} \{\frac{8kT}{\pi\mu}\}^{1/2} N_{Av}$ Hence rate constant $k_r = z_{AB} \exp(\frac{-E_a}{RT})$

Note k = Boltzmann constant (1.38066 X 10⁻²³ J K⁻¹)and so here use k_r = reaction rate constant

- Z_{AB} was defined as the molecular collision number. z_{AB} is termed the molar collision frequency factor or more simply the frequency factor (A)
- Lewis applied this treatment to the reaction $2HI \rightarrow H_2 + I_2$ at 556K Rate constant k_r(calc) = $3.5 \times 10^{-7} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ k_r(obs) = $3.5 \times 10^{-7} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$

The excellent agreement in this case was rather misleading. In general, simple collision theory does not lead to accurate frequency factors. Molecules are not hard spheres!

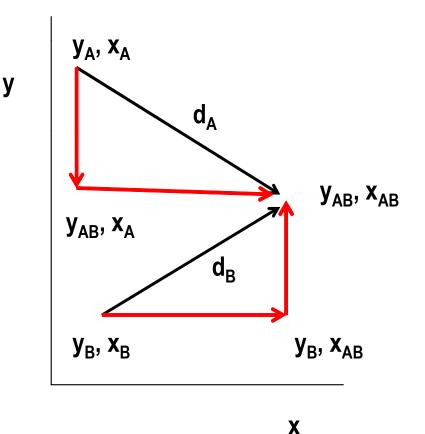
Can include a steric factor P for orientation but cannot estimate P in a satisfactory manner. pptpres7 6

Extended collision theory

- In practice, not all collisions are effective even if the molecules have sufficient energy. Need to justify the Arrhenius term by considering the energy of collisions in more detail.
- The effective energy of the collision depends both on the kinetic energies of the molecules and the nature of the collision, i.e., head-on or at an angle.
- Need to determine which collisions will have sufficient energy for reaction and hence estimate the frequency of such collisions.
- The nature of the collision of 2 molecules is analogous to the collision of two moving billiards balls.
 - When the collision is central and head-on then the translational kinetic energy of the collision is the sum of the energies of the two balls.
 - When the collision is at an angle or involves glancing contact then the head-on component of the energies is reduced and so less energy is transferred. The relative velocity and the relative kinetic energy and their alignment with the collision must be considered.

Relative velocity

- Consider 2 molecules A and B covering the distances d_A and d_B marked out in the plot in the time t before they collide.
- The magnitude of the velocities is given by distance/ time: d_A/t and d_B/t
- Molecule A has travelled distance y_{AB}-y_A on the yaxis and distance x_{AB}-x_A on the x-axis.
- Molecule A has velocity components $y_{AB}-y_A/t = v_{yA}$ in the y-direction and $x_{AB}-x_A/t = v_{xA}$ in the x-direction.
- Likewise molecule B has velocity components y_{AB}-y_B/t = v_{yB} and x_{AB}-x_A/t = v_{xB}.



Hence the relative velocity is $v_{yA} - v_{yB} = (y_A - y_B)/t$ in the y-direction and $v_{xA} - v_{xB} = (x_A - x_B)/t$ in the x-direction, the combination making the overall relative velocity v_{rel} .

In this case the relative velocity component in the y-direction is greater than the component in the x-direction.

Extended collision theory continued

- The relative kinetic energy ε of the collision is given by $\varepsilon = \frac{1}{2} \mu v_{rel}^2$
- If the minimum energy required for reaction is ε_A (activation energy per molecule) and ε ≥ ε_A then the collision may lead to reaction but the reactive collision cross-section may be less than σ_{AB}
 - The function $\sigma(\epsilon)$ for the reactive collision cross-section varies with the energy of the collision.
 - A collision with energy $\varepsilon < \varepsilon_A$ is never effective, i.e., $\sigma(\varepsilon) = 0$
 - A collision with energy $\epsilon >>> \epsilon_A$ is effective over the entire range of collision conditions, i.e., $\sigma(\epsilon) = \sigma_{AB}$
 - − For a collision with energy $ε > ε_A$, $0 < σ(ε) ≤ σ_{AB}$.
- The relative velocity component parallel to an axis containing the vector connecting the centres of A and B (line of centres) is most important.
 Head-on collision: v_{rel} is exactly || to line of centres Grazing collision: v_{rel} is exactly ⊥ to line of centres
- $\sigma(\epsilon)$ can be derived from geometry. $\sigma(\epsilon) = \{1 - \frac{\epsilon_a}{\epsilon}\}\sigma_{AB}$

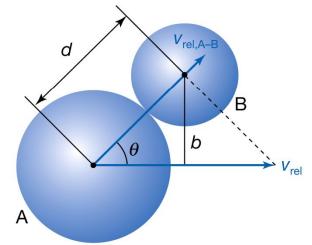


Diagram:www.oup.co.uk/powerpoint/bt/atkins

Extended collision theory continued

- Now need to determine the number of molecules that have energy in excess of ε_a .
- The distribution of molecular energy is derived from the Maxwell-Boltzmann distribution of molecular speeds (kinetic theory of gases).
- The fraction of molecules with energy in the range ε to ε + dε is written f(ε)dε where f(ε) is the distribution of energy.

$$f(\varepsilon)d\varepsilon = 2\pi \ (\frac{1}{\pi kT})^{3/2}\varepsilon^{1/2}\exp(\frac{-\varepsilon}{kT})d\varepsilon$$

• The probability of a qualifying collision by two molecules can be derived from the integral

$$\int_{0}^{\infty} \sigma(\varepsilon) v_{rel} f(\varepsilon) d\varepsilon = 2\pi \left(\frac{1}{\pi kT}\right)^{3/2} \int_{0}^{\infty} \sigma(\varepsilon) \left\{\frac{2\varepsilon}{\mu}\right\}^{1/2} \varepsilon^{1/2} \exp(\frac{-\varepsilon}{kT}) d\varepsilon = \sigma \left\{\frac{8kT}{\pi\mu}\right\}^{1/2} \exp(\frac{-\varepsilon_{a}}{kT})$$

- This has the same form as the expression derived from simple collision theory by combination of Z_{AB} with the empirical Arrhenius expression. Note the weak temperature dependence (T^{1/2}) of the frequency factor.
- The molar activation energy $E_a = N_{Av} \varepsilon_a$. This quantity is still empirical. $E_a/R = \varepsilon_a/k$

Comparison of theory with experiment

- Values of σ estimated from study of non-reactive collisions or molecular structure
- Experimental values of frequency factor A measured from Arrhenius plots
- Many experimental values of A are << theoretical values, one value below is greater!</p>
- Need to invoke steric factor P = A_{expt}/A_{theory}

Reaction	T/K	E _a /kJ mol ⁻¹	A/(L mol ⁻¹ s ⁻¹) Experiment	A/(L mol ⁻¹ s ⁻¹) Theory	Steric factor P
$2NOCI \rightarrow 2NO + CI_2$	470	102	9.4 x10 ⁹	5.9 x 10 ¹⁰	0.16
$2NO2 \rightarrow 2NO + O_2$		111	2.0 x10 ⁹	4.0 x 10 ¹⁰	0.05
$2CIO \rightarrow CI_2 + O_2$		0	6.3 x10 ⁷	2.5 x10 ¹⁰	2.5x10 ⁻³
$H_2 + C_2 H_4 \rightarrow C_2 H_6$	800	180	1.24 x10 ⁶	7.3 x10 ¹¹	1.7 x10 ⁻⁶
$CH_3 + CH_3 \rightarrow C_2H_6$	300	0	2.4 x 10 ¹⁰	1.1 x10 ¹¹	0.22
$K + Br_2 \rightarrow KBr + Br$	600	0	1 x10 ¹²	2.1 x10 ¹¹	4.8

Data from 'Reaction kinetics', M.J. Pilling & P.W. Seakins and 'Physical Chemistry', 7th edn., P.W. Atkins & J. de Paula pptpres7 11

Summary of collision theory Pros

- Simple model, easy to visualise and understand
- Explains the importance of molecular collisions for reaction
- Qualitative prediction of the form of the temperature dependence of the rate constant k_r (Arrhenius relation)

Cons

- Predicted values of the frequency factor A are often far from experimental results
- Steric factor P can allow for conformational effects but
 - the values are empirical and cannot be calculated a priori
 - the values do not always correlate with structural complexity

Oversimplifications of collision theory

- Molecules are not hard uniform spheres
 - They have a variety of shapes as defined by their molecular structures
 - Different atoms are arranged in definite positions within the molecule
 - They are not hard; their shapes can be distorted and some can adopt alternative conformations
- Molecules have vibrational and rotational kinetic energy as well as translational kinetic energy
- Molecules have long range interactions (very big for ions) which help to explain some values of P
- Molecules do not react instantly
 - Reactions take place over a finite period
 - The structure of the reaction complex evolves during this time
- Some of these deficiencies will be tackled in transition state theory.